Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Effect of dexmedetomidine post-treatment on oxidative stress and apoptosis induced by myocardial ischemia-reperfusion injury in rats

Zhihai Geng1, Xuelian Zhu1, Xi Han2, Xianfeng Xin1

1Department of Anesthesiology, First Affiliated Hospital of Jiamusi University; 2Department of Anatomy, School of Basic Medical Sciences, Jiamusi University, Jiamusi, PR China.

For correspondence:-  Xianfeng Xin   Email: ct44cn@163.com

Accepted: 26 February 2020        Published: 31 March 2020

Citation: Geng Z, Zhu X, Han X, Xin X. Effect of dexmedetomidine post-treatment on oxidative stress and apoptosis induced by myocardial ischemia-reperfusion injury in rats. Trop J Pharm Res 2020; 19(3):571-575 doi: 10.4314/tjpr.v19i3.16

© 2020 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To study the effect of dexmedetomidine on myocardial ischemia-reperfusion injury (MI/RI)-induced imbalance on oxidant-prooxidant status and apoptotic changes in rats.
Methods: Ninety (90) male Wistar rats were randomly divided into three groups – sham, model and post-treatment.  In model rats, the anterior descending branch of the left coronary artery was ligated for 25 min, prior to their being subjected to reperfusion for 2 h. Rats in the post-treatment group were subjected to ligation at the anterior descending branch of the left coronary artery for 25 min, but they were intravenously injected with dexmedetomidine at a dose of 10 μg/kg prior to reperfusion. There was no ligation in the sham group. Malondialdehyde (MDA), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were assayed. Lactate dehydrogenase (LDH) and creatine kinase isoenzyme (CK-MB) levels were also evaluated. Apoptosis was measured with TdT-mediated dUTP nick end labeling (TUNEL) assay.
Results: Compared with the sham group, MDA level in the model group was significantly rose, while SOD and GSH-Px activities were markedly decreased (p < 0.05). Moreover, there were higher LDH and CK-MB activities in model rats than in the sham rats, but they were significantly lower in the post-treatment group than in the model group (p < 0.05). Apoptosis was higher in model rats than in sham operation rats, but was markedly decreased in post-treatment rats than in model rats (p < 0.05).
Conclusion: Post-treatment with dexmedetomidine exerts myocardial protective effect via significant reduction in oxidative stress-induced myocardial injury and apoptosis.

Keywords: Dexmedetomidine, Myocardial ischemia-reperfusion injury, Antioxidant status, Programmed cell death

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates